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Resumo

Grande parte da fisica experimental € apoiada sobre a dptica, com a maneira como a luz pode aden-
trar a matéria e nos informar suas propriedades. Para satisfazer as mais distintas condi¢cdes expe-
rimentais, a radiacdo sincrotron emerge como uma solucio pertinente. Produzida nos sincrotrons
por campos magnéticos, pode-se controlar suas caracteristicas de maneira flexivel e capturar fai-
xas estreitas do seu espectro eletromagnético desde infravermelho até Raios X duros, com inten-
sidades muito elevadas e polarizagdo bem definida. Particularmente, um equipamento que pro-
duz e permite a manipulacdo da radiagdo sincrotron sdo os onduladores, dispositivos de campo
magnético oscilante em seu interior. Esta monografia dedica-se a definicdo e caracterizagdo de
radiacdo eletromagnética com foco em radiacdo sincrotron no regime ultrarrelativistico quando

produzida por onduladores.

Palavras-chave: Acelerador sincrotron. Radiag¢do sincrotron. Onduladores.
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1 Introducao

A luz € o objeto sensorial com o qual podemos nos comunicar como sociedade e também com os
elementos do meio ambiente. A informacdo que a luz nos traz dos compostos da natureza expande
as suas dimensdes atdmicas e assim podemos estudd-los. E por meio do entendimento de o que é
luz e como ela interage com as substancias que podemos desvendar suas estruturas geométricas e
eletronicas, combina-las e assim desenvolver tecnologia e conhecimento.

A escala de comprimento da luz, seu comprimento de onda, pode se comparar a escala inte-
ratdmica, por isso, sob certas condi¢des, a matéria atua espalhando radiacao incidente, resultando em
padrdes de difracao que permitem resolver a estrutura desses compostos. Além disso, 0s mecanismos
de absorcao ou emissao de fotons causam transi¢oes eletronicas nos niveis de energia dos materiais e
ao coletar essa informac¢ao podemos analisar suas propriedades [1].

Para producdo de luz para experimentos, explora-se diversos fendmenos fisicos nos quais ha
emissao de radiacdo, por exemplo, choque de elétrons a altas energias contra placas metélicas [2],
oscilacao de corrente elétrica em um condutor [3] e radiacdo térmica de metais aquecidos [4]. Em
destaque, um importante mecanismo € o de producdo de radiacdo sincrotron.

Radiagdo sincrotron é emitida tangencialmente ao movimento de uma particula relativistica e
dentro de um cone estreito, por isso € altamente colimada. Possui polarizacio bem definida e seu
espectro abrange desde infravermelho até Raios X duros, com intensidades que excedem outras fontes,
especificamente na regido de altas frequéncias [5]. Com essas propriedades, a radiacao sincrotron logo
foi reconhecida como uma ferramenta poderosa para pesquisa em ciéncias de materiais, cristalografia,
fisica de superficies, quimica, biofisica, medicina e entre outros [5]. A producao dessa radiagao é feita
via acelerag¢do por campo magnético € um dispositivo comum para isso sdo os onduladores [6].

Uma descricdo conceitual e tedrica dos onduladores serd o principal proposito desta monogra-
fia, estruturada a seguir. Primeiramente, em 2, introduziremos o acelerador sincrotron, seu funciona-
mento, elementos magnéticos e onde os onduladores se inserem. A fundamentacio eletromagnética
de radiacdo serd descrita na Se¢do 3. Os onduladores, seu principio magnetostatico e descrigao tedrica
da producdo de radiacdo serdo apresentados em 4 e finaliza-se em 5 comentando-se aspectos do seu

desenvolvimento pratico e exemplos de modelos. Por fim, conclui-se este estudo na Secao 6.



2 Sincrotrons

Os sincrotrons sao aceleradores de particulas, especificamente, fons leves, protons e, principal-
mente, elétrons, que utilizam-se de campos magnéticos para manter as particulas em trajetos fechados
enquanto elas emitem radiacdo a ser aplicada em pesquisa. Sao chamados sincrotrons por sincroniza-
rem a aplica¢do de campo magnético com a crescente energia cinética relativistica das particulas [1].
Dessa nomenclatura, chamou-se a radiacdo produzida por essas maquinas de luz sincrotron.

Em artigo de 1944, o fisico russo Vladimir Veksler deriva o principio de estabilidade de fase que
torna possivel a aceleracao estdvel de particulas carregadas quando o regime relativistico tornava-se
relevante. No ano seguinte, em Los Alamos, EUA, Edwin McMillan encontra, de forma independente,

0 mesmo principio de sincronizac¢ao e, no mesmo ano, lidera a construgdo do primeiro sincrotron [7].

Feixe de
Elétrons

RF

e ———— ]

r
1
I
Linha | |
de Luz| -

Booster

Dipolos
Canhédo de
Elétrons
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Figura 1 — Esquema dos principais componentes de instalacdes sincrotron modernas.
Fonte: Elaborada pelo autor.

O acelerador compde-se de cinco partes principais [ 1], assim como ilustrado na Figura 1, sdo elas:

* Canhdo de elétrons: consiste de uma chapa metélica, tal como de Tungsténio, que quando aque-
cida expele elétrons, segundo o efeito termoidnico;

* Acelerador linear (LINAC): conjunto de cavidades por onde pacotes de onda de radiofrequéncia
(RF) viajantes acompanham os elétrons e, por ressonancia do campo elétrico com o formato da
cavidade, o campo resultante acelera o feixe de particulas.

* Anel de impulsionamento (Booster)*: anel de magnetos por onde os elétrons sdo continuamente
acelerados por campos elétricos estaciondrios de cavidades de RF ressonantes até a energia de

operacao especificada para o anel de armazenamento.

“No sentido original da palavra, os Boosters seriam os verdadeiros sincrotrons, ja que € neles onde os
campos magnéticos sao aumentados conforme o aumento da energia dos elétrons. Atualmente, porém, a palavra
passou a se referir a maquina, o acelerador, como um todo ou mesmo ao anel de armazenamento [1].



* Anel de armazenamento: anel de magnetos onde o feixe produzido € mantido enquanto emite
radiacdo, sendo a energia perdida pelos elétrons nesse processo reposta por cavidades de RF.
Ele é composto por trechos retos seguidos por trechos curvos.

* Linhas de luz: estacdes experimentais localizadas apds aberturas nos trechos curvos do acele-

rador. E nelas onde a radiacio sincrotron é manipulada e aplicada para estudos de interesse.

Nos anéis do acelerador hd uma rede magnética formada por imas ao redor da trajetoria dos
elétrons. Em cada trecho curvo ha magnetos que curvam a trajetéria dos elétrons, os chamados dipo-
los, e os eletroimds de quadrupolo e sextupolo’, responsaveis por focalizar o feixe.

Um dos sincrotrons mais avancados da atualidade € o Sirius, acelerador localizado na cidade de
Campinas, Sao Paulo. Construido e operado pelo Centro Nacional de Pesquisa em Energia e Mate-
riais (CNPEM), no ano de 2023 o Sirius conta com 14 estacdes experimentais (linhas de luz) em
desenvolvimento ou operantes e disponiveis para usudrios de toda a comunidade cientifica mundial.

No futuro, a instalagao abrigara até 38 estacoes [8].

T Apesar da expansio multipolar s6 incluir termos de monopolo, dipolo, quadrupolo, octopolo etc, “polos”
no termo “fma de multipolo” se refere a quantidade de polos magnéticos que o compdem e nao a termos da
expansdo. Por exemplo, o sextupolo possui seis polos magnéticos, 3 sul e 3 norte, formando um hexagono.
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3 Radiacao

3.1 Eletromagnetismo de cargas pontuais

As equagdes de Maxwell para os campos eletromagnéticos expressos em termos do potencial
elétrico V' e o potencial vetor A, no calibre (gauge) de Lorenz [3], reduzem-se a duas equagdes de
onda nao homogéneas, nas quais temos p, densidade de carga, e j, densidade de corrente elétrica,

distribuidas no espago como termos de fonte.

21/ 192V _ 1

ViV c? otz T eop
24 1824 7
Vid =G5 = —Hod

Da solugao geral dessas equacdes [3], conclui-se que a presenga de campo eletromagnético a certa
distancia de uma fonte, seja ela uma distribui¢do de cargas estiticas ou em movimento, s6 acontece
apods um certo tempo desde que V' e A foram emitidos. Ap6s emissdo em instante ¢, no qual a distancia
ao observador era R, a observacdo de campo s6 ocorre em instante t = ¢’ + R(t')/c. Nesse sentido,

diz-se que t’ € o tempo retardado em rela¢do ao tempo observado ¢.

Figura 2 — Esquema de particula carregada em movimento. Fonte: Elaborada pelo autor.

Seja uma particula de carga ¢ em movimento, Figura 2, a posicdo do observador em relagdo a
carga no instante ¢’ € R = Rn e seu parAmetro de velocidade é 5 = ¥//c. No caso de interesse, a fonte
pontual estd em movimento no vicuo, portanto J = 0 e p = 0 em todo o espago, exceto na posicao

da particula. Nessas condi¢des, as solugdes das equacdes sao os potenciais de Lienard-Wiechert [3].

g 1 g 3 L
V(Z,t) = po— (R(1—ﬁ-@")) AT ) = p— (R(1—ﬁ-/§)>t,_v($’t) .
t/

De posse de V' e A, retornamos aos campos elétrico e magnético através das expressoes:

. . 9A - L
E(f,t):—VV—E . B(Z,t) =V x A
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Para o campo elétrico, as devidas substituicdes e manipulagdes algébricas nos levam a:

€]

3 ¢ [axa-Gxfhi -3 1
" [ (1-n-Bpe R 3(1-a gy

tl

A segunda parcela do campo depende de 1/R? e diminui mais rapidamente do que o termo com
1/ R, portanto, ela torna-se desprezivel a grandes distancias e podemos escrever o campo abaixo. Esse

serd o regime adotado em todo o estudo desta monografia.

B t) ~ 2 (ﬁx(im_.)f )l> )

—

Podemos calcular o transporte de energia por esse campo através do vetor de Poynting, S(t) =

coc®E(t) x B(t). Para radiacdo de cargas pontuais, mostra-se que B(t) = I x E(t) [3], logo:
S(t) = coc(E*(t)i — (- E(1)) E(1))

Pela expressdo acima, nota-se que |S| o |E]%. Com |S| = k/r™, constante ao longo de uma
superficie esférica centrada na fonte, a pot€ncia de energia relativa a esse campo que € transmitida a

uma distancia R é:

5 = Kk o  Amk 1
A condi¢do de radiagdo € obtida para |§ | = k/r? ja que P = 47k e ndo diminui com a

distancia, ou seja, os campos eletromagnéticos propagam-se indefinidamente transportando energia.
Essa observacao justifica a aproximacao (2), que representa a parte do campo elétrico correspondente
aradiacao emitida pela particula. Nota-se também uma caracteristica geral de ondas eletromagnéticas:

nesse regime, E torna-se completamente ortogonal ao sentido de propagagao 7.

3.2 Medidas de radiacao

Para o melhor aproveitamento da radiacdo emitida, € importante a defini¢do de pardmetros que
nos permitem quantificar sua composi¢ao de frequéncias, bem como a sua dispersdo, coeréncia, a
taxa de recebimento de energia com o tempo e entre outros. Com isso, pode-se avaliar e adequar essa
luz para estar em conformidade com os experimentos de destino.

A poténcia que atravessa uma unidade de area do observador € obtida projetando o transporte de

energia S de radiacdo sobre a dire¢do de observacio.

S(t)-n = ec(E*(t) — (- E(t)?) = S(t)-n = epc|n x (E(t) x 1)|?
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O elemento de area observado pode ser expresso em termos do seu respectivo angulo sélido a
fonte como dA = R%*(t')dS2. Assim, podemos retirar de S - 7 sua dependéncia com a distncia ao

observador por meio do angulo solido preenchido pela radiagao.

ity i = diff) - ng,()?m N %(;) — R x (B(t) x 0)[2 = |A(1)]?

Para simplificacio das expressdes, definimos o vetor A(t) = (eoc)/2R(t) x (E(t) x 7) e intro-

duzimos sua transformada de Fourier e a respectiva transformada inversa.

Alw) = \/% /_OO Atyetdt 5 A(t) = \/% /_00 Alw)e ™ dw

A energia total emitida por unidade de angulo sélido é:

£E P A,
dtd ~ o a0 dQ
Do teorema de Plancherel (Parseval), [* | A(t)|?dt = [°°_|A(w)|*dw, reescrevemos a distribui-

¢do angular da energia total por meio de uma expressao dependente das frequéncias w da radiacdo.

d& R
o= M @)

Agora pode-se definir a distribuicio angular espectral de energia irradiada -&L

Qe -
d © 2
_5 ::/ d I<w)dw
Q) d0de

Integrou-se apenas em frequéncias positivas, ja que o sinal de w ndo possui significado fisico [2].
Para distinguir de &£, na qual aplicou-se integrais no tempo, denota-se essa nova grandeza por [ (w).

Utilizando Equacao (3), obtém-se expressao direta para essa distribuicao:

d*I(w)
dQddw
Esse resultado relaciona de maneira quantitativa o comportamento da poténcia irradiada como

= 2| A(w)|? 4)

fun¢do do tempo com o espectro de frequéncias da energia irradiada [2].

3.3 Distribuicoes de radiacao

No regime de interesse, o campo € ortogonal a direcdo de observacgao, n - E =0, logo ff(t) =
(eoc)2R(t")E(t). A poténcia por unidade de angulo sélido nos informa como a energia é espalhada
angularmente. No tempo de emissdo t’ e a grandes distancias, observa-se a distribuicdo angular de
poténcia:

dP(t") d d& d d€& dt dP( ) dt 4.8

W " andr =~ adrdr — o @~ A0

=
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2

Py ¢ X (=B x B

_ _ 5
ds2 1672€¢pc (1—n-p6)° ©)

Uma das propriedades basicas de interesse da radiacdo € seu espectro, que representamos pela

energia irradiada por unidade de frequéncia e por unidade de drea ou angulo s6lido, dada pela Equacao

(4). Substituindo A(¢) em termos do campo elétrico, encontramos:

2T ec 2

dQdw 7 ©)

/ h R(t)E(t)e™*dt

—00

Por outro lado, calculamos explicitamente a transformada de Fourier de /T(t) passando a varidvel

de integracdo para o tempo de emissao e apds algumas manipulacdes encontra-se:

. Pw? /2 poo o ,
Aw) =1 (—) / n x (A x e @RI/ gy

3
32m€pc .

No limite de campo distante, Ré aproximadamente paralelo a %, vide Figura 2. Com isso, pode-

mos aproximar a medida de R retirando de z = || a projecdo de 17 = 7(¢') na direcdo de R:
Rt~ x—n-7(t)

Nessa condi¢do, finalmente encontramos uma expressao simplificada para a energia emitida por

um elétron para frequéncias entre w e w + dw dentro de angulo sélido df? na direcdo n:

o
dQdw  16m3eyc

00 2
/ 7 X (ﬁ % B)eiw(t’—ﬁf(t’)/c)dt/ (7)

o0

Vemos também que a fase da radiacao é:

o(t") = w(t' —n-r(t)/c) (®)

3.4 Radiacao Sincrotron

O controle do feixe de elétrons nos sincrotrons modernos através de dispositivos magnéticos per-
mite obter diversas propriedades de interesse da luz sincrotron. Essa radiacdo possui alto brilho e
coeréncia, além de polarizacdo e energia controldveis, desde infravermelho até Raios X duros (com-
primento de onda de 1 A ou menor) [1]. Para introduzir as principais caracteristicas de radiacdo
sincrotron, vamos revisar a ac¢do local de um campo magnético constante sobre uma particula carre-
gada [9], o que pode ser visto também como uma breve anélise da radiacao de ima de dipolo.

Como resultado do seu movimento, a carga emite radiacdo, que a grandes distancias distribui

sua poténcia segundo a Equacdo (5). Consideremos uma particula movimentando-se com 5 = 3z,
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sob uma aceleragdo = (7 e sua radiacdo sendo observada a uma direcio n = (n,,ny,n,) =

(sin 0 cos ¢, sin  sin ¢, cos #). Com isso, a poténcia por unidade de dngulo sélido é:

dpP ¢ BQ((I —n,B)? —n2/y?) B q* 62 ] sin? @ cos? ¢
dQ  1672ec (1—-n,5)° ~ (4m)2epc (1 — Bcos )3 v2(1 — B cosf)?
Toda a radiacdo € emitida sob um cone muito estreito em torno de § = 0 e o movimento é

ultrarrelativistico, entdo vamos aproximar cos ~ 1 — 0%/2;sinf ~ 0 e 3 ~ 1 — 1/(27?). Inserindo

as aproximacoes na distribui¢do de poténcia, temos:

P ¢ ~5 32 (1 B 4262 cos? gb)

dQ  2r2eyc (1 4+ ~262)3 (1 + ~262)2 )

Vemos que quanto maior for a aceleracio imposta a carga, mais energia ela irradiard, ja que a

2 2

poténcia é proporcional ao quadrado da aceleracio, <& 9o X 3 = P2
Além disso, podemos calcular a abertura angular que concentra a maior por¢cao de radiacao

como o desvio-padrao do ﬁngulo ponderado pela propria distribuicdo de poténcia, ou seja, oy =

V(0?) 2. A fungdio L ¢ par em relagdo a 6, logo (#) = 0. Por fim:
2m
o2 = (67 = fHQdeQ N Is fo 0%4E0dfde
[ 4EdQ 2T AP gdhdg

O angulo 0 varia de 0 a 7, porém sua integracdo foi estendida até 400, jd que a energia irradiada
diminui para préximo de 0 a pequenos valores de 6. Com isso, podemos aplicar a mudanga de variaveis

0 — a, 8 = tan a, e realizar o célculo. Por fim, encontramos:

op =1/ (10)
le—4 Cone de Radiacao Sincrotron
$=0

=< 10 — Pp=n/2
3 0.5
s 1y
g 00
+
©-05
e
X —1.0

0.0 0.2 0.4 0.6 0.8 1.0

z (u.a.)

Figura 3 — Grifico polar de (9) exibindo a radiagdo espalhada em uma abertura angular de 2/~.
Fonte: Elaborada pelo autor.
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4 Onduladores

Em sincrotrons modernos, além do uso natural dos setores curvos do acelerador para coletar a
radiacdo oriunda dos dipolos, aproveitam-se também os trechos retos através dos chamados disposi-
tivos de insercdo (DIs) [6]. Esses equipamentos defletem o feixe por pequenas excursoes transversais
e, em seguida, manipulam-no novamente para retornar a trajetdria sobre a dire¢ao longitudinal.

Os DIs mais predominantes nos sincrotrons sdo os wigglers e onduladores. Wigglers consistem
de arranjos periddicos de blocos magnéticos que produzem campo oscilante no espaco, aproxima-
damente senoidal, o que leva os elétrons a seguirem um trajeto periddico também. Dessa forma,
a radiacdo produzida nos vdrios periodos se combina constituindo um espectro do tipo de dipolo,
porém com maiores intensidades [6].

Ja onduladores sdo tais como wigglers, porém com campo magnético menos intenso ou periodo
mais curto, o que resulta em deslocamentos transversais do feixe de elétrons suficientemente peque-
nos de modo que as frentes de onda emitidas a cada periodo se interferem construtivamente. A luz
produzida entdo se distribui em um espectro composto por uma série de harmonicos de baixa largura
de banda e alta intensidade, superiores muitas vezes as alcancadas com wigglers para as mesmas
faixas de frequéncias [6].

Em contrapartida aos wigglers, como a radiacdo produzida pelos onduladores é quase mono-
cromdtica, o que a maioria dos experimentos necessita, € possivel aproveitar praticamente toda a luz
produzida pelo dispositivo [1]. Além disso, através de configuracOes das fileiras (cassetes) de blo-
cos magnéticos, a combinacdo de campo na vertical e horizontal leva a geracdo de radiacdo com
polarizacdo e energia controldveis [6]. Por tais razdes, onduladores tornaram-se o dispositivo de

inser¢do de maior interesse nos sincrotrons modernos.

4.1 Cinematica em um ondulador

—

Em um ondulador [10], um campo B = (B,, B,, B.) exerce uma for¢ca magnética, segundo ex-

~ 27 — =4 . . 7 7z
pressao da forga de Lorentz, ’ym% = F = qu x B. Com isso, encontramos a trajetéria do elétron.

d*v e (dz (dy dz dx
—=——\—7\7B:~By |, | B0 ———B.|,iB, —yB.
at? 7m<dt (dz y) dt( dz > EC )

O ondulador tem efeito de alterar ligeiramente o movimento na transversal, em z e v, ja na longi-

tudinal, a velocidade % continua ultrarrelativistica. Nesse sentido, nota-se que os desvios angulares

dy
dz’

Com isso, as equagdes no plano transversal sao:

em relacdo a longitudinal, Z—j e =2, sdo pequenos e, em primeira aproximagao, podem ser desprezados.

d? e dz

@(«%,y) = T omdt (—By, B,)
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dx dy e
(E’E) 7m/(B —B,)dz (11) (x,y) // 2 )dzdt (12)

Vamos considerar um campo apenas na vertical, B= —Bgsin <2“Z) 1, para um modelo de ondu-

lador, logo o elétron apenas serd defletido na horizontal.

d—CE = i/—B sin 27z dz = @ _ Bodu cos 2m
dt ym 0 Ay dt 2mmey Au

O parametro de velocidade 3, = 1 dw do elétron na dire¢do horizontal € calculado e da sua ex-

pressdo, reunindo as constantes relativas apenas ao dispositivo, define-se K, o parametro de deflexao.
eBoA, 21z K 21z eBo\
P 2mrmey o8 ( Au ) ~y o8 ( Ay ) (13) K 2mme 14

Como visto na Se¢do 3.4, a radiacdo sincrotron € emitida localmente em um cone de abertura

tipica 1/, porém o elétron emite radiagdo durante todo o seu movimento oscilatério e, no total, a cada
periodo, a radiacdo é espalhada em um cone de abertura /7. Se K é préximo de 1, o que caracteriza
um ondulador, o maior desvio angular do elétron € cerca de 1/, segundo a expressao acima, entdo a
radiacdo emitida durante todo o seu movimento em tal DI permanece aproximadamente dentro desse
cone, o que permite um efeito de interferéncia significativo [6]. A forca magnética ndo realiza trabalho
sobre uma particula livre, por isso o elétron é defletido, porém o mdédulo da sua velocidade ndo se

altera. Com isso, pode-se afirmar:

K? 2
B2+ B2 =% = const = Bz:\/ﬁz—?cos@( ”Z)

Au

Para velocidades ultrarrelativisticas, como nos sincrotrons, v > 1, assim, pode-se aproximar:

K? 2 K? K? 4
B, ~f (1 — —252’72 cos? ()\Lj)) =4 (1 — 75 - 1577 cos (%j))

E util considerarmos o valor médio quadratico de 3,c ao longo de um periodo magnético do

ondulador. A média do cosseno em um periodo é nula e aproximando 1/ para 1, obtém-se:

2 2
B=(8.)=5 (1—£) (15) B =B - = cos (4“) (16)

42
A velocidade média em z é fc, logo uma primeira aproximacio de z(') é z(t') = Bct’. Define-se

a frequéncia wy referente ao periodo magnético:

Be
Wy = 27T)\—u
Com isso, podemos integrar as velocidades e encontrar:
K _ K2
z(t') = = sin (wot') 5 2(t) = Bet' — 2 € sin (2wot”)

v Wy 4~2 2wq
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Na maioria dos casos, o movimento da particula € bem pequeno. Considerando uma faixa de
valores tipicos do parametro de deflexdo, K = 0.5 — 3, periodo A, = 50 mm e energia E = 3 GeV, o
angulo de deflexao méximo na horizontal € 0,0833-0.50 mrad e a respectiva amplitude de oscilacdo é

0,66-4,00 m. Em z, a oscilagdo em torno da média é ainda menor, com amplitude de 0,07-2,50 A.

4.2 Interferéncia

Enquanto os elétrons oscilam dentro do ondulador, a aceleracio méxima acontece nos extremos de
sua trajetdria e, como deduzido na secao 3.4, maior aceleragdo significa maior intensidade de radiacao.
Por isso, € comum considerarmos que as emissdes acontecem sO nesses pontos para o calculo dos

harmonicos [9], radiacdo que resulta de interferéncia construtiva.

Figura 4 — Interferéncia entre dois raios luminosos emitidos em maximos consecutivos da trajetdria
do elétron no ondulador.
Fonte: Elaborada pelo autor.

A emissdo em A e A’, Figura 4, ndo acontece a0 mesmo tempo, entdo ndao podemos afirmar que a
diferenca de caminho dptico é simplesmente AB = )\, cos §. Consideremos que a luz € emitida em A
no instante t4 = 0, assim, tg = A\, cosf/cetr = % A diferenca de tempo entre as frentes de onda

emitidas nesses polos consecutivos é At =t — tg, logo:

= g _ Aucost = g(l — Bcos)
Be ¢ Be

A diferenca de fase de um periodo a outro é wAt e deve ser um multiplo de 27 para a interferéncia

At

construtiva acontecer, entdo 27n = w,At, logo:

1—30089:nﬂ:ﬂ (I7)
Wp, w1

A equacgdo em termos de comprimento de onda se torna A\, = ’\n—“ <% — cos 9). Aplicando (15) e

usando 3 = /1 — 1/42 e cosf ~ 1 — 6?/2, encontra-se:

A
Ay, = —— (14 K?/2 + ~26° 18
onyp (LT EC[249°6) (18)
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Segundo equacdo acima, a chamada Equacdo do Ondulador, quanto menor o periodo magnético
A, € maior a energia do feixe, e consequentemente o 7y, menor serao os \,, ou seja, 0s comprimentos
de onda emitidos. Um ondulador tipico, com periodo de algumas dezenas de milimetros, produz
radiacdo de alguns nandmetros, ja que v é da ordem de alguns milhares [6].

Vemos que os harmonicos também dependem do parametro /, logo da amplitude de campo
magnético do dispositivo, Equagdo (14). Assim, curiosamente, um menor campo produz uma radiagcdo
de maior energia, o contrario de um dipolo, onde é necessario um campo maior para produzir A\ me-
nor [6]. Normalmente, os onduladores contém mecanismo que permite variar a intensidade do seu
campo, assim pode-se variar K e consequentemente os comprimentos de onda da luz produzida.

Os comprimentos de onda variam com o angulo € de observacgdo, por isso a abertura das linha de
luz é crucial para escolher as caracteristicas adequadas da radiacdo. Em 6 = 0, isto é, sobre o eixo do
ondulador, obtém-se os menores A, logo as maiores energias emitidas pelo ondulador se concentram

em torno da dire¢ao longitudinal.

4.3 Espectro

Com a trajetoria ja parametrizada, podemos inseri-la no cdlculo da distribui¢ao espectral angular
de energia, Equacao (7). Tomando-se n uma direcdo tal que # < 1 na qual a radiacdo é observada e

r(t") = (z(t'),0, 2(t')) a posi¢do da particula, calcula-se a fase w(t' — n - 7/c):

P w . .
w(t' —n-7/c) = —wpt’ — uw sin (wet') + vw sin (2wt’) (19)
W1
Na expressio, define-se as constantes © = 2@ cos¢p e v = L2 Parao produto vetorial duplo
Ywo S'y wo

na integral, . x (1 X ﬁ), considerando K < v e 6 < 1 pode-se desprezar termos de segunda ordem,

ou seja, termos com (K /)2, 0 ou (K /7). Assim:
i x (i x B) = (- f)n— f = (Bcos ¢ — By, Osin ¢, 0)

A integral a ser resolvida esta definida para todo o tempo de movimento do elétron, isto é, ¢/

de —oo a +o0, todavia a particula passa um tempo finito no ondulador. Consideremos entdo que a
o L . 4 —m+2r N
contagem de tempo se inicia na metade do primeiro periodo magnético, logo t' € [—1, 2l |
wo wo

Seja [ a integral em (7), para todo o tempo no ondulador, e [, para cada periodo, assim:

=z

+00 -1/2+N)2z  N-1 (1/2+k)373 N-1
I= / / =y / =Y I = I=) I
= (~1/2+k) 2% k=0

1
2 k=0 0

i

Fazemos uma mudanca de varidvel e passamos do tempo contado desde o inicio do ondulador

para o tempo contado apenas em cada periodo, ou seja, de ¢’ para ¢’ — k2%, assim:
wo

I, = /WO A X (ﬁ « B’(t/ _ Qkﬂ/wo))eiw(t’—an/wo—ﬁ-?(t’—ka/wo)/c)dt/
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O movimento do elétron € periddico, logo sua velocidade também € periddica, por isso 5 (t' —
2k Jwy) = B(t'). Por outro lado, a posi¢io longitudinal é sempre crescente, entdo a fase se torna

crescente também com o tempo. Substituindo ¢’ — 2k7 /wy na coordenada z, chegamos em:
2(t = 2kmjwy) = 2(t') — kX, = 2(t') — 2k7Be/wo

Reunindo os termos adicionais devido ao avancgo de fase separadamente, a integral se torna:

) 2 —
I, =Ipe ™ . §= wl(l — [ cos @)
Wo

Segundo Equagio (17), 1 — Bcosf = wy/wy, logo § = 2m = Com isso, o modulo quadrado da
integral ao longo de todo o ondulador é:
2
n? (NG§/2)

N—-1 .
I 2 _ T 2 —ikd — |7 951
| | | 0| ;6 | 0| Sin2 (6/2)

|2sin2 (N7mw/w)

= |1 = N?|I)|* - L(Nw/w)

sin? (7w /wy )

Normalizando pelo niimero total de periodos N, definimos a fungdo de grade, L(Nw/w, ), por
analogia com o padrdo de interferéncia por grades de difracdo. Nos graficos de L abaixo percebe-
se que quanto mais periodos, mais estreitos serdao as linhas do espectro do ondulador em torno dos

harmonicos, assim como observa-se nos padroes de radiacao por grades de difracao.

(a) (b)

Funcéo de grade: 6 =0 Funcao de grade: w = 1w (0)
1.0 Nes 1.0 s
— N=20 —— N=20
0.8 0.8 “
5 0.6 306
3 3
= =
= 0.4 = 0.44
0.2 0.2
0.0 MA 0.0
0 1 2 3 4 5 0 2 4 6 8 10 12
W/ 262

Figura 5 — Linhas de interferéncia. (a) Angulo fixo: sobre eixo do ondulador. (b) Frequéncia fixa:
harmonico 1 sobre eixo.
Fonte: Elaborada pelo autor.

Os méximos de %{j&)) acontecem quando o, = k7 e os minimos adjacentes quando N (o —
kr) = +m. O perfil dos picos é aproximadamente triangular, logo podemos estimar a sua largura a
meia altura (FWHM) como a metade da base do tridngulo, ou seja, Aay = % = 7/N. No caso
do ondulador, & = mw/wy, sendo w; = w; (@), como aponta a Equagdo (17), logo A(w/w;) = 1/N.

Tomando-se um angulo fixo e frequéncias em torno de um harmdnico k, Figura 5a, a largura

de frequéncias é Awy, = w;/N, ou seja, o espectro emitido observado em certa dire¢o fixa possui
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harmonicos de mesma largura w; /N. Em termos da frequéncia wy, observada:

kwy Awy, 1
A = — é - =
WETEN wn kN

Para uma determinada frequéncia, Figura 5b, observa-se também interferéncia construtiva a dife-

rentes angulos constituindo espectro formado por linhas. Em cada dngulo dos méximos de emissao

tem-se uma largura A(kw(0)/wi(0)) = 1/N = A(6?) = 132]2;;2, portanto:

2
RN R OF
v kN

A abertura angular do cone em que a radiacao se espalha é da ordem de (’y\/ﬁ )~!, ou seja, menor
do que a emissdo local de radiacao sincrotron, Equacao (10), e diminui com o nimero de periodos.

Separando o fator de interferéncia N?L(Nw/w;) do restante da expressdo do espectro, nota-se
que todo o perfil de intensidade de radiac@o € determinado por apenas um periodo de movimento, que
€ calculado na integral /. A dependéncia temporal na exponencial dessa integral pode ser reescrita

em termos de funcdes de Bessel de indices inteiros j, segundo a expansao de Jacobi-Anger:

m sin (wt) _ Z J zgwt

j——OO

Aplicando essa expansao na fase (19), obtém-se:

zw(t’ AT/c) _ ZJ UU.) ) iRuwot’ R, :W/w1 —m4+2n

Assim, pode-se resolver a integral /; de exponenciais com e sem cosseno e expressar os resultados

em termos da fungdo sinc x = sin z/z. Por fim, obtemos:

*I  ew?N?
dwd)  16megey?wd

Z I (VW) I (uw) [ 276 (cos @& + sin ¢y ) sinc (TR, )+

2
(Nw)
w1

Como mostrado na Equacao (6), a expressao dentro do médulo quadrado € relacionada ao campo

(20)
— 2K [sinc (m(R, + 1)) + sinc (7(R, — 1))]]

elétrico da radiagdo, por isso, podemos analisar a polarizacdo da radiacdo emitida apenas analisando
as componentes 2 € ¢ dentro do médulo. Como ndo ha diferenca de fase entre essas componentes, a
radiacdo € linearmente polarizada. Além disso, sobre o eixo, quando # = 0, a polariza¢do ¢ comple-
tamente horizontal, sé resta a componente & na expressao.

Ainda sobre o eixo do ondulador, o pardmetro u é nulo, ja que § = 0, entdo temos .J,,(0). Nesse

caso, as fungdes de Bessel sdo ndo nulas apenas quando m = 0, com Jy(0) = 1, logo:

z Z Jn(vw) [sinc (m(R, + 1)) + sinc (7 (R, — 1))}

n=—oo

d*I _ EWwN?K?
dwdQ|,_, 16megcy2wd
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Quando observa-se um harmonico k, os sinc sdao nao nulos apenas quando R, £ 1 = 0, logo
quando as fungdes de Bessel tém os indices n = —(k + 1)/2. Além disso, L(Nk) = 1, entdo:

d21 (wy) 22 N2 2
= Toracz X 17 — T
dwdQ |,_, 16meoew] } (k1) /2(0Wk) (k—1)/2 (ka)‘

Se k ¢é par, entdo o indice —(k + 1)/2 ndo € inteiro e ndo existird um n pelo qual as fungdes
de Bessel passaram para .J,,(vw) sinc (7(R,, £ 1) ser ndo nulo. Por essa razio, sobre o eixo, ndao ha
radiagdo referente a harmonicos pares, s6 aos impares.

A expressio nos fornece a energia irradiada pela passagem de um elétron através do ondulador. E
mais comum expressar essa medida em termos do fluxo de f6tons emitidos por um feixe de elétrons,
entdo, para isso, calculamos a poténcia como P = I(w) - I, /e, sendo I, a corrente elétrica do feixe
(carga por tempo de volta no acelerador), e, com isso, o nimero de fétons de certo harmdnico por
segundo, n = P/(hw). Por fim, temos o fluxo de fotons 7 por unidade de dngulo sélido df) e por
unidade de largura de banda relativa dw /w, mais referida como densidade espectral angular de fluxo
[6], cuja unidade é fétons/s/mrad?/0,1%bandwidth = 10~*fétons/s/rad?/bandwidth. A Figura 6 exibe
o espectro (21), calculado segundo Equacido (22), com a corrente de operacdo do Sirius - CNPEM.

d*n T d*n 1 d*P 1 d*I(w)
dQdw Jw h dQdw  hdQdw he dQdw

(22)

1el6 Densidade de Fluxo
=
5
g 8,
o
c
& =0
o 6' = '
-2
'o‘f Ay =50 mm,
S N = 20,
T4 K=2,
c I, =350 mA
= b
@
W 21
c
o
NS
R W U W A

Energia (keV)

Figura 6 — Densidade espectral angular de fluxo de f6tons para os parametros especificados.
Fonte: Elaborada pelo autor.
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5 Onduladores na Pratica

A realizacdo tedrica de onduladores data de 1947, por V. L. Gintzburg [11]. Posteriormente, em
1951, Motz e colaboradores analisam as propriedades tedricas da radiacdo de onduladores [12] e
em 1953 constroem o primeiro exemplar [13]. Em 1981, Halbach [14] utiliza a ideia de vetores
magnetizacao cuja rotacdo evolui linearmente em uma dire¢do, tal como na Figura 7a, para producdo
de campo de multipolo e de onduladores. Nesse mesmo artigo, ele apresenta o arranjo de 4 blocos por
periodo, Figura 7b, configuracdo usada até hoje, pois € um bom compromisso entre ficil manufatura

e campo aproximadamente senoidal.

b
@ CI N

///f'—«,\\f‘—\\\ o AL e | R L e

TANSN—/ |\ ~— — 1 | L [~ T ll—

Figura 7 — Vetores magnetizacdo rotacionando ao longo do comprimento do objeto. (a) Caso ideal.
(b) Arranjo de Halbach para onduladores.
Fonte: Elaborada pelo autor.

H4 diferentes modelos de onduladores quanto ao formato e distribuicdo dos cassetes de blocos,
cada um com o propdsito de melhorar alguma caracteristica da radiacdo. O tipo mais comum € o
planar, composto por dois cassetes de blocos tipicamente retangulares, um superior e outro inferior.

E de muito interesse a capacidade de controlar os pardmetros da radiacdo que os onduladores
produzem. Para isso, adiciona-se ao dispositivo suportes mecanicos para movimentacdo dos seus
cassetes, o que altera o campo e, consequentemente, a radiacdao produzida. O ondulador do tipo APU
(Adjustable Phase Undulator) [15] permite o deslocamento na longitudinal de um dos cassetes, o
que resulta em diminui¢io da amplitude do campo e controle do pardmetro de deflexio K. E de
muita utilidade também a manipulacao da polarizacdo da radiacdo, assim surgem os onduladores com
blocos produzindo campo na direc@o horizontal e vertical através da adi¢ao de mais fileiras nas regides
superiores e inferiores, como nos chamados APPLE (Advanced Planar Polarizer Light Emitter) [16].

5.1 Analises de campo de onduladores reais

Um ondulador deve satisfazer dois requisitos principais de operacdo: as posi¢des e dire¢des de
movimento finais dos elétrons ndo devem variar em relacdo as da entrada e a interferéncia construtiva
deve ser mdxima de periodo a periodo para garantir a maxima intensidade de radiacdo. Essas duas

caracteristicas sao expressas pelas integrais de campo e o erro de fase [6], andlises descritas a seguir.
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Como apresentado nas Equagdes (11) e (12), a posicdo e velocidade do elétron sdo relacionadas

dz ~o

diretamente as integrais do campo magnético. Utilizando ¢, podemos expressar a segunda inte-

E ~~

gral de (12) como funcao de z e expressar o angulo da dire¢ao de movimento a partir das velocidades,
) ldn o, 1dy ; . . e
' = S ey = 5, comisso as posi¢des e diregdes finais sdo:

(@, y) = — /+OO(B B)dz ; (z,y) = — /+OO/+OO(B B,)dz'dz
7y _’ymc - Yo x ) 7y _’ymc - e Yo x

Figura 8 — Inclinagdo da direcdo de movimento do elétron. Fonte: Elaborada pelo autor.

Portanto, idealmente, ambas as integrais devem ser nulas para ndo haver um desvio do feixe de
elétrons na saida do DI. Na pratica, como observado no CNPEM, ¢é possivel alcancar integrais da
ordem de 25 Gem para primeira integral e 10 k Gem? para a segunda. Para elétrons a 3 GeV, isso
equivale a cerca de 2,5 urad ou 0, 5” de dngulo e 10 um em deslocamento, respectivamente.

Além disso, erros de magnetizacdo dos blocos e de constru¢do mecénica resultam em perfis
de campo imperfeitos, o que se reflete em uma diminui¢do da emissdo de radiacdo. A medida da
correlacdo entre erros de campo e intensidade de radiacdo € dada pelo erro de fase. Mostra-se que a
intensidade cai exponencialmente com o nimero do harmdnico k& e o valor RMS o, desse erro, com

I o e ¥ [

17]. Por essa razao busca-se anular o erro de fase para obter a méxima emissao.
A fase daradiagdao de um ondulador pode ser pensada como o atraso da frente de onda emitida pelo
elétron em relag@o a sua posicao longitudinal, isto €, a fase associada a um comprimento AL = ¢t — z,
2

¢ = STAL, o que pode ser mostrado analiticamente da Equag@o (8). Considerando s o comprimento

da trajetéria desenvolvida pela particula, entdo Sct = s. Por fim, a fase para cada posicdo z é:

P(z) = 2% (% - z) (23)

No caso ideal, a particula percorre o0 mesmo comprimento de um periodo magnético a outro,
As = const, logo a fase ¢° € linear nos polos j de campo. Dessa maneira, o erro de fase d¢ é
estabelecido como o desvio em relagdo a um comportamento linear nos polos, ou seja, d¢; = ¢; — qb?.
Define-se entdo 0, = (d¢;)rams, cujo valor tipico almejado é de cerca de 5°, o que corresponde a
uma diminui¢ao de 7% na intensidade do terceiro harmoénico, por exemplo.

Ap6s o ondulador ser construido, havera imperfeicdes no seu campo magnético, sejam por erros
mecanicos de fixacdo e montagem dos blocos e cassetes ou magnéticos, da magnetizacdo medida e a
real dos blocos. Por isso, faz-se necessario uma série de etapas de medicao e ajustes para otimizagao

da qualidade do dispositivo através de métodos baseados nos parametros apresentados.
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5.2 Onduladores CNPEM - Sirius

A fonte de luz sincrotron Sirius inclui diversos onduladores ao longo do seu anel de arma-
zenamento. Eles devem ser construidos especialmente para atender as necessidades de energia e
polarizagdo das linhas de luz. O projeto magnético de um ondulador exige diversas simula¢des mag-
netostaticas e ajustes praticos de campo que serdo brevemente apresentadas a seguir.

Para simulacdo, além de outros softwares, € utilizado o Radia [ 18], um pacote de métodos numé-
ricos para cdlculos magnetostéticos otimizado para onduladores e wigglers e amplamente aplicado no
desenvolvimento de DIs pelo mundo. Com esse pacote € possivel construir o conjunto de blocos do
ondulador dadas suas dimensdes, posi¢des e vetores magnetizacao iniciais.

A partir disso, cada objeto € subdividido em volumes menores, nos quais magnetizagao M uni-
forme € assumida, entdo a magnetizacao resultante da interagdo entre blocos é encontrada por itera-
¢oes a partir do seu campo. No espaco em torno dos objetos VxH=0 logo H = —V®,,, sendo

®,,, o potencial magnético escalar [2].

—
/

. 1 [ VMG, , 1 [#d-M®F)
(7)) = —— | ——dr' + — ¢ ———2d
(7) 47T/V R T dm Jg R

Para cada subdivisao, V- M = 0, assim, o campo magnético de cada uma € calculado pelo pacote

a/

segundo expressao abaixo e, por superposi¢ao, o campo do conjunto é determinado.

- 1 [ R - M)
H=-— a — g dd (24)

Um exemplo € o PAPUSO0 (Prototype Adjustable Phase Undulator; periodo 50 mm), um ondulador
planar do tipo APU, concluido no ano de 2023 no CNPEM. Ele estd em uso na linha de luz SAPU-
CAIA (Scattering APparatUs for Complex Applications and In-situ Assays), do Sirius, dedicada a
caracterizacdo estrutural de materiais nano e microestruturados aplicando a técnica de Espalhamento
de Raios X a Baixos Angulos (SAXS) [8].

(a) (b)

054 — Bx(T)
By (T)
— Bz(T)

PAPUS50 Modelo (Kmax) - Andlises
Campo magnético (x=0,y=0)

B(T)
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T S— Trajetéria
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WA Ty
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Figura 9 — PAPUS0. (a) Modelo computacional Radia. (b) Resultados calculados do modelo.
Fonte: Elaborada pelo autor.
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Com o modelo do PAPUS0, Figura 9a, calculou-se seu campo magnético pelo Radia e pdde-se
encontrar a respectiva trajetoria de um elétron segundo suas equacdes de movimento por meio do
método de Runge-Kutta de ordem 4, além de calcular o erro de fase (23) nos polos (médximos e

minimos), como apresentado na Figura 9b.

(@) (b) |
: __ PAPU50 (Kmayx) - Andlises
Campo magnético (x=0,y=0)

051 — Bx(T)
= — By (M)
R —
-0.5
__ 101 x(z) Trajetéria
g 54— v@
=
> 0_
_ 51 --_ RMS: 1.48° Erro de Fase
2 0
=
w
_57 T T T T T T T
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Figura 10 — PAPU50 montado. (a) Medic¢ao de campo por sensor Hall. (b) Analises finais, apds ajustes.
Fonte: (a) Foto adaptada de Reinaldo Basilio. (b) Elaborada pelo autor.

A Figura 10a exibe o PAPU50 em medig¢ado no qual € identificar o sensor Hall, os cassetes superior
e inferior e os blocos em arranjo de Halbach. Ja na Figura 10b tem-se o campo medido sobre eixo, os
resultados de trajetoria com desvios e o respectivo erro de fase. Com isso, exemplificamos as andlises

descritas anteriormente, importantes para os ajustes praticos.
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6 Conclusao

Neste trabalho, apresentou-se uma descricao geral de radiacdo, seus fundamentos eletromagné-
ticos, defini¢do e as diferentes maneiras de caracteriza-la através de suas distribuicdes angulares de
energia e por frequéncia emitida, seu espectro. Essa foi a base para a posterior discussao de radiacao
sincrotron emitida por elétrons em regime ultrarrelativistico, 5 = 1, e de onduladores, dispositivo que
a produz, objetivo desse estudo.

Discutiu-se a producdo de radiagdo por um ondulador do tipo planar APU, com campo magnético
apenas em uma direcdo, considerada vertical. Mostrou-se que um dispositivo de periodo magnético
de alguns milimetros produz radiacdo de comprimentos de onda da ordem de nandmetros. Além
disso, devido a interferéncia de periodo a periodo, o espectro constitui-se de harmdnicos de grande
intensidade. Também, a radiacdo ¢é linearmente polarizada e, sobre a direcao do eixo do dispositivo, é
completamente polarizada na dire¢ao horizontal.

Por fim, comentou-se os aspectos praticos de construcao de onduladores em geral. A teoria apre-
sentada e referenciada proporcionou a defini¢do da qualidade de onduladores reais por meio das
andlises de suas integrais de campo, 0 que os caracteriza como um dispositivo de insercao, isto &,
ndo proverem desvios totais acentuados do movimento inicial dos elétrons, e do seu erro de fase,
medida da interferéncia construtiva da radiagdo. Ainda, pode-se ilustrar um exemplo pritico com o

PAPUS50, mostrando resultados a partir de dados simulados e medidos do dispositivo real.
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