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Resumo
Grande parte da fı́sica experimental é apoiada sobre a óptica, com a maneira como a luz pode aden-

trar a matéria e nos informar suas propriedades. Para satisfazer as mais distintas condições expe-

rimentais, a radiação sı́ncrotron emerge como uma solução pertinente. Produzida nos sı́ncrotrons

por campos magnéticos, pode-se controlar suas caracterı́sticas de maneira flexı́vel e capturar fai-

xas estreitas do seu espectro eletromagnético desde infravermelho até Raios X duros, com inten-

sidades muito elevadas e polarização bem definida. Particularmente, um equipamento que pro-

duz e permite a manipulação da radiação sı́ncrotron são os onduladores, dispositivos de campo

magnético oscilante em seu interior. Esta monografia dedica-se à definição e caracterização de

radiação eletromagnética com foco em radiação sı́ncrotron no regime ultrarrelativı́stico quando

produzida por onduladores.

Palavras-chave: Acelerador sı́ncrotron. Radiação sı́ncrotron. Onduladores.
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1 Introdução

A luz é o objeto sensorial com o qual podemos nos comunicar como sociedade e também com os
elementos do meio ambiente. A informação que a luz nos traz dos compostos da natureza expande
as suas dimensões atômicas e assim podemos estudá-los. É por meio do entendimento de o que é
luz e como ela interage com as substâncias que podemos desvendar suas estruturas geométricas e
eletrônicas, combiná-las e assim desenvolver tecnologia e conhecimento.

A escala de comprimento da luz, seu comprimento de onda, pode se comparar à escala inte-
ratômica, por isso, sob certas condições, a matéria atua espalhando radiação incidente, resultando em
padrões de difração que permitem resolver a estrutura desses compostos. Além disso, os mecanismos
de absorção ou emissão de fótons causam transições eletrônicas nos nı́veis de energia dos materiais e
ao coletar essa informação podemos analisar suas propriedades [1].

Para produção de luz para experimentos, explora-se diversos fenômenos fı́sicos nos quais há
emissão de radiação, por exemplo, choque de elétrons a altas energias contra placas metálicas [2],
oscilação de corrente elétrica em um condutor [3] e radiação térmica de metais aquecidos [4]. Em
destaque, um importante mecanismo é o de produção de radiação sı́ncrotron.

Radiação sı́ncrotron é emitida tangencialmente ao movimento de uma partı́cula relativı́stica e
dentro de um cone estreito, por isso é altamente colimada. Possui polarização bem definida e seu
espectro abrange desde infravermelho até Raios X duros, com intensidades que excedem outras fontes,
especificamente na região de altas frequências [5]. Com essas propriedades, a radiação sı́ncrotron logo
foi reconhecida como uma ferramenta poderosa para pesquisa em ciências de materiais, cristalografia,
fı́sica de superfı́cies, quı́mica, biofı́sica, medicina e entre outros [5]. A produção dessa radiação é feita
via aceleração por campo magnético e um dispositivo comum para isso são os onduladores [6].

Uma descrição conceitual e teórica dos onduladores será o principal propósito desta monogra-
fia, estruturada a seguir. Primeiramente, em 2, introduziremos o acelerador sı́ncrotron, seu funciona-
mento, elementos magnéticos e onde os onduladores se inserem. A fundamentação eletromagnética
de radiação será descrita na Seção 3. Os onduladores, seu princı́pio magnetostático e descrição teórica
da produção de radiação serão apresentados em 4 e finaliza-se em 5 comentando-se aspectos do seu
desenvolvimento prático e exemplos de modelos. Por fim, conclui-se este estudo na Seção 6.
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2 Sı́ncrotrons

Os sı́ncrotrons são aceleradores de partı́culas, especificamente, ı́ons leves, prótons e, principal-
mente, elétrons, que utilizam-se de campos magnéticos para manter as partı́culas em trajetos fechados
enquanto elas emitem radiação a ser aplicada em pesquisa. São chamados sı́ncrotrons por sincroniza-
rem a aplicação de campo magnético com a crescente energia cinética relativı́stica das partı́culas [1].
Dessa nomenclatura, chamou-se a radiação produzida por essas máquinas de luz sı́ncrotron.

Em artigo de 1944, o fı́sico russo Vladimir Veksler deriva o princı́pio de estabilidade de fase que
torna possı́vel a aceleração estável de partı́culas carregadas quando o regime relativı́stico tornava-se
relevante. No ano seguinte, em Los Alamos, EUA, Edwin McMillan encontra, de forma independente,
o mesmo princı́pio de sincronização e, no mesmo ano, lidera a construção do primeiro sı́ncrotron [7].

Figura 1 – Esquema dos principais componentes de instalações sı́ncrotron modernas.
Fonte: Elaborada pelo autor.

O acelerador compõe-se de cinco partes principais [1], assim como ilustrado na Figura 1, são elas:
• Canhão de elétrons: consiste de uma chapa metálica, tal como de Tungstênio, que quando aque-

cida expele elétrons, segundo o efeito termoiônico;
• Acelerador linear (LINAC): conjunto de cavidades por onde pacotes de onda de radiofrequência

(RF) viajantes acompanham os elétrons e, por ressonância do campo elétrico com o formato da
cavidade, o campo resultante acelera o feixe de partı́culas.

• Anel de impulsionamento (Booster)*: anel de magnetos por onde os elétrons são continuamente
acelerados por campos elétricos estacionários de cavidades de RF ressonantes até a energia de
operação especificada para o anel de armazenamento.

*No sentido original da palavra, os Boosters seriam os verdadeiros sı́ncrotrons, já que é neles onde os
campos magnéticos são aumentados conforme o aumento da energia dos elétrons. Atualmente, porém, a palavra
passou a se referir à máquina, o acelerador, como um todo ou mesmo ao anel de armazenamento [1].
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• Anel de armazenamento: anel de magnetos onde o feixe produzido é mantido enquanto emite
radiação, sendo a energia perdida pelos elétrons nesse processo reposta por cavidades de RF.
Ele é composto por trechos retos seguidos por trechos curvos.

• Linhas de luz: estações experimentais localizadas após aberturas nos trechos curvos do acele-
rador. É nelas onde a radiação sı́ncrotron é manipulada e aplicada para estudos de interesse.

Nos anéis do acelerador há uma rede magnética formada por ı́mãs ao redor da trajetória dos
elétrons. Em cada trecho curvo há magnetos que curvam a trajetória dos elétrons, os chamados dipo-
los, e os eletroı́mãs de quadrupolo e sextupolo†, responsáveis por focalizar o feixe.

Um dos sı́ncrotrons mais avançados da atualidade é o Sirius, acelerador localizado na cidade de
Campinas, São Paulo. Construı́do e operado pelo Centro Nacional de Pesquisa em Energia e Mate-
riais (CNPEM), no ano de 2023 o Sirius conta com 14 estações experimentais (linhas de luz) em
desenvolvimento ou operantes e disponı́veis para usuários de toda a comunidade cientı́fica mundial.
No futuro, a instalação abrigará até 38 estações [8].

†Apesar da expansão multipolar só incluir termos de monopolo, dipolo, quadrupolo, octopolo etc, “polos”
no termo “ı́mã de multipolo” se refere à quantidade de polos magnéticos que o compõem e não a termos da
expansão. Por exemplo, o sextupolo possui seis polos magnéticos, 3 sul e 3 norte, formando um hexágono.



10

3 Radiação

3.1 Eletromagnetismo de cargas pontuais

As equações de Maxwell para os campos eletromagnéticos expressos em termos do potencial
elétrico V e o potencial vetor A⃗, no calibre (gauge) de Lorenz [3], reduzem-se a duas equações de
onda não homogêneas, nas quais temos ρ, densidade de carga, e J⃗ , densidade de corrente elétrica,
distribuı́das no espaço como termos de fonte.∇2V − 1

c2
∂2V
∂t2

= − 1
ϵ0
ρ

∇2A⃗− 1
c2

∂2A⃗
∂t2

= −µ0J⃗

Da solução geral dessas equações [3], conclui-se que a presença de campo eletromagnético a certa
distância de uma fonte, seja ela uma distribuição de cargas estáticas ou em movimento, só acontece
após um certo tempo desde que V e A⃗ foram emitidos. Após emissão em instante t′, no qual a distância
ao observador era R, a observação de campo só ocorre em instante t = t′ + R(t′)/c. Nesse sentido,
diz-se que t′ é o tempo retardado em relação ao tempo observado t.

Figura 2 – Esquema de partı́cula carregada em movimento. Fonte: Elaborada pelo autor.

Seja uma partı́cula de carga q em movimento, Figura 2, a posição do observador em relação à
carga no instante t′ é R⃗ = Rn̂ e seu parâmetro de velocidade é β⃗ = v⃗/c. No caso de interesse, a fonte
pontual está em movimento no vácuo, portanto J⃗ = 0⃗ e ρ = 0 em todo o espaço, exceto na posição
da partı́cula. Nessas condições, as soluções das equações são os potenciais de Lienárd-Wiechert [3].

V (x⃗, t) =
q

4πϵ0

1(
R(1− n̂ · β⃗)

)
t′

; A⃗(x⃗, t) =
q

4πϵ0c

(
β⃗

R(1− n̂ · β⃗)

)
t′

= V (x⃗, t)
β⃗(t′)

c

De posse de V e A⃗, retornamos aos campos elétrico e magnético através das expressões:

E⃗(x⃗, t) = −∇⃗V − ∂A⃗

∂t
; B⃗(x⃗, t) = ∇⃗ × A⃗
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Para o campo elétrico, as devidas substituições e manipulações algébricas nos levam a:

E⃗(x⃗, t) =
q

4πϵ0

[
n̂× ((n̂− β⃗)× ˙⃗

β)

(1− n̂ · β⃗)3c
1

R
+

n̂− β⃗

γ2(1− n̂ · β⃗)3
1

R2

]
t′

(1)

A segunda parcela do campo depende de 1/R2 e diminui mais rapidamente do que o termo com
1/R, portanto, ela torna-se desprezı́vel a grandes distâncias e podemos escrever o campo abaixo. Esse
será o regime adotado em todo o estudo desta monografia.

E⃗(x⃗, t) ≃ q

4πϵ0c

(
n̂× ((n̂− β⃗)× ˙⃗

β)

(1− n̂ · β⃗)3
1

R

)
t′

(2)

Podemos calcular o transporte de energia por esse campo através do vetor de Poynting, S⃗(t) =

ϵ0c
2E⃗(t)× B⃗(t). Para radiação de cargas pontuais, mostra-se que B⃗(t) = 1

c
n̂× E⃗(t) [3], logo:

S⃗(t) = ϵ0c(E
2(t)n̂− (n̂ · E⃗(t))E⃗(t))

Pela expressão acima, nota-se que |S⃗| ∝ |E⃗|2. Com |S⃗| = k/rn, constante ao longo de uma
superfı́cie esférica centrada na fonte, a potência de energia relativa a esse campo que é transmitida a
uma distância R é:

P =

∫
S⃗ · dA⃗ =

k

Rn
4πR2 =

4πk

Rn−2
⇒ P ∝ 1

Rn−2

A condição de radiação é obtida para |S⃗| = k/r2, já que P = 4πk e não diminui com a
distância, ou seja, os campos eletromagnéticos propagam-se indefinidamente transportando energia.
Essa observação justifica a aproximação (2), que representa a parte do campo elétrico correspondente
à radiação emitida pela partı́cula. Nota-se também uma caracterı́stica geral de ondas eletromagnéticas:
nesse regime, E⃗ torna-se completamente ortogonal ao sentido de propagação n̂.

3.2 Medidas de radiação

Para o melhor aproveitamento da radiação emitida, é importante a definição de parâmetros que
nos permitem quantificar sua composição de frequências, bem como a sua dispersão, coerência, a
taxa de recebimento de energia com o tempo e entre outros. Com isso, pode-se avaliar e adequar essa
luz para estar em conformidade com os experimentos de destino.

A potência que atravessa uma unidade de área do observador é obtida projetando o transporte de
energia S⃗ de radiação sobre a direção de observação.

S⃗(t) · n̂ = ϵ0c(E
2(t)− (n̂ · E⃗(t)2) ⇒ S⃗(t) · n̂ = ϵ0c|n̂× (E⃗(t)× n̂)|2
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O elemento de área observado pode ser expresso em termos do seu respectivo ângulo sólido à
fonte como dA = R2(t′)dΩ. Assim, podemos retirar de S⃗ · n̂ sua dependência com a distância ao
observador por meio do ângulo sólido preenchido pela radiação.

S⃗(t) · n̂ =
dP (t)

dA
=

dP (t)

R2(t′)dΩ
⇒ dP (t)

dΩ
= ϵ0cR

2(t′)|n̂× (E⃗(t)× n̂)|2 =: |A⃗(t)|2

Para simplificação das expressões, definimos o vetor A⃗(t) = (ϵ0c)
1/2R(t′)n̂× (E⃗(t)× n̂) e intro-

duzimos sua transformada de Fourier e a respectiva transformada inversa.

A⃗(ω) =
1√
2π

∫ ∞

−∞
A⃗(t)eiωtdt ; A⃗(t) =

1√
2π

∫ ∞

−∞
A⃗(ω)e−iωtdω

A energia total emitida por unidade de ângulo sólido é:

d2E
dtdΩ

=
dP

dΩ
⇒ dE

dΩ
=

∫ ∞

−∞

dP (t)

dΩ
dt ⇒ dE

dΩ
=

∫ ∞

−∞
|A⃗(t)|2dt

Do teorema de Plancherel (Parseval),
∫∞
−∞ |A⃗(t)|2dt =

∫∞
−∞ |A⃗(ω)|2dω, reescrevemos a distribui-

ção angular da energia total por meio de uma expressão dependente das frequências ω da radiação.

dE
dΩ

=

∫ ∞

−∞
|A⃗(ω)|2dω (3)

Agora pode-se definir a distribuição angular espectral de energia irradiada d2I
dΩdω

:

dE
dΩ

=:

∫ ∞

0

d2I(ω)

dΩdω
dω

Integrou-se apenas em frequências positivas, já que o sinal de ω não possui significado fı́sico [2].
Para distinguir de E , na qual aplicou-se integrais no tempo, denota-se essa nova grandeza por I(ω).
Utilizando Equação (3), obtém-se expressão direta para essa distribuição:

d2I(ω)

dΩdω
= 2|A⃗(ω)|2 (4)

Esse resultado relaciona de maneira quantitativa o comportamento da potência irradiada como
função do tempo com o espectro de frequências da energia irradiada [2].

3.3 Distribuições de radiação

No regime de interesse, o campo é ortogonal à direção de observação, n̂ · E⃗ = 0, logo A⃗(t) =

(ϵ0c)
1/2R(t′)E⃗(t). A potência por unidade de ângulo sólido nos informa como a energia é espalhada

angularmente. No tempo de emissão t′ e a grandes distâncias, observa-se a distribuição angular de
potência:

dP (t′)

dΩ
=

d

dΩ

dE
dt′

=
d

dΩ

dE
dt

dt

dt′
=

dP (t)

dΩ

dt

dt′
= |A⃗(t)|2(1− n̂ · β⃗)
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dP (t′)

dΩ
=

q2

16π2ϵ0c

∣∣∣n̂× ((n̂− β⃗)× ˙⃗
β)
∣∣∣2

(1− n̂ · β⃗)5
(5)

Uma das propriedades básicas de interesse da radiação é seu espectro, que representamos pela
energia irradiada por unidade de frequência e por unidade de área ou ângulo sólido, dada pela Equação
(4). Substituindo A⃗(t) em termos do campo elétrico, encontramos:

d2I

dΩdω
=

ϵ0c

π

∣∣∣∣∫ ∞

−∞
R(t′)E⃗(t)eiωtdt

∣∣∣∣2 (6)

Por outro lado, calculamos explicitamente a transformada de Fourier de A⃗(t) passando a variável
de integração para o tempo de emissão e após algumas manipulações encontra-se:

A⃗(ω) = i

(
q2ω2

32π3ϵ0c

)1/2 ∫ ∞

−∞
n̂× (n̂× β⃗)eiω(t

′+R(t′)/c)dt′

No limite de campo distante, R⃗ é aproximadamente paralelo a x⃗, vide Figura 2. Com isso, pode-
mos aproximar a medida de R retirando de x = |x⃗| a projeção de r⃗′ = r⃗(t′) na direção de R⃗:

R(t′) ≈ x− n̂ · r⃗(t′)

Nessa condição, finalmente encontramos uma expressão simplificada para a energia emitida por
um elétron para frequências entre ω e ω + dω dentro de ângulo sólido dΩ na direção n̂:

d2I

dΩdω
=

q2ω2

16π3ϵ0c

∣∣∣∣∫ ∞

−∞
n̂× (n̂× β⃗)eiω(t

′−n̂·r⃗(t′)/c)dt′
∣∣∣∣2 (7)

Vemos também que a fase da radiação é:

ϕ(t′) = ω(t′ − n̂ · r⃗(t′)/c) (8)

3.4 Radiação Sı́ncrotron

O controle do feixe de elétrons nos sı́ncrotrons modernos através de dispositivos magnéticos per-
mite obter diversas propriedades de interesse da luz sı́ncrotron. Essa radiação possui alto brilho e
coerência, além de polarização e energia controláveis, desde infravermelho até Raios X duros (com-
primento de onda de 1 Å ou menor) [1]. Para introduzir as principais caracterı́sticas de radiação
sı́ncrotron, vamos revisar a ação local de um campo magnético constante sobre uma partı́cula carre-
gada [9], o que pode ser visto também como uma breve análise da radiação de ı́mã de dipolo.

Como resultado do seu movimento, a carga emite radiação, que a grandes distâncias distribui
sua potência segundo a Equação (5). Consideremos uma partı́cula movimentando-se com β⃗ = βẑ,
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sob uma aceleração ˙⃗
β = β̇x̂ e sua radiação sendo observada a uma direção n̂ = (nx, ny, nz) =

(sin θ cosϕ, sin θ sinϕ, cos θ). Com isso, a potência por unidade de ângulo sólido é:

dP

dΩ
=

q2

16π2ϵ0c

β̇2((1− nzβ)
2 − n2

x/γ
2)

(1− nzβ)5
=

q2

(4π)2ϵ0c

β̇2

(1− β cos θ)3

(
1− sin2 θ cos2 ϕ

γ2(1− β cos θ)2

)
Toda a radiação é emitida sob um cone muito estreito em torno de θ = 0 e o movimento é

ultrarrelativı́stico, então vamos aproximar cos θ ≈ 1− θ2/2; sin θ ≈ θ e β ≈ 1− 1/(2γ2). Inserindo
as aproximações na distribuição de potência, temos:

dP

dΩ
=

q2

2π2ϵ0c

γ6β̇2

(1 + γ2θ2)3

(
1− 4γ2θ2 cos2 ϕ

(1 + γ2θ2)2

)
(9)

Vemos que quanto maior for a aceleração imposta à carga, mais energia ela irradiará, já que a
potência é proporcional ao quadrado da aceleração, dP

dΩ
∝ β̇2 ⇒ P ∝ β̇2.

Além disso, podemos calcular a abertura angular que concentra a maior porção de radiação
como o desvio-padrão do ângulo ponderado pela própria distribuição de potência, ou seja, σθ =√
⟨θ2⟩ − ⟨θ⟩2. A função dP

dΩ
é par em relação a θ, logo ⟨θ⟩ = 0. Por fim:

σ2
θ = ⟨θ2⟩ =

∫
θ2 dP

dΩ
dΩ∫

dP
dΩ
dΩ

≃
∫ 2π

0

∫∞
0

θ2 dP
dΩ
θdθdϕ∫ 2π

0

∫∞
0

dP
dΩ
θdθdϕ

O ângulo θ varia de 0 a π, porém sua integração foi estendida até +∞, já que a energia irradiada
diminui para próximo de 0 a pequenos valores de θ. Com isso, podemos aplicar a mudança de variáveis
θ → α, θ = tanα, e realizar o cálculo. Por fim, encontramos:

σθ = 1/γ (10)

Figura 3 – Gráfico polar de (9) exibindo a radiação espalhada em uma abertura angular de 2/γ.
Fonte: Elaborada pelo autor.
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4 Onduladores

Em sı́ncrotrons modernos, além do uso natural dos setores curvos do acelerador para coletar a
radiação oriunda dos dipolos, aproveitam-se também os trechos retos através dos chamados disposi-
tivos de inserção (DIs) [6]. Esses equipamentos defletem o feixe por pequenas excursões transversais
e, em seguida, manipulam-no novamente para retornar à trajetória sobre a direção longitudinal.

Os DIs mais predominantes nos sı́ncrotrons são os wigglers e onduladores. Wigglers consistem
de arranjos periódicos de blocos magnéticos que produzem campo oscilante no espaço, aproxima-
damente senoidal, o que leva os elétrons a seguirem um trajeto periódico também. Dessa forma,
a radiação produzida nos vários perı́odos se combina constituindo um espectro do tipo de dipolo,
porém com maiores intensidades [6].

Já onduladores são tais como wigglers, porém com campo magnético menos intenso ou perı́odo
mais curto, o que resulta em deslocamentos transversais do feixe de elétrons suficientemente peque-
nos de modo que as frentes de onda emitidas a cada perı́odo se interferem construtivamente. A luz
produzida então se distribui em um espectro composto por uma série de harmônicos de baixa largura
de banda e alta intensidade, superiores muitas vezes às alcançadas com wigglers para as mesmas
faixas de frequências [6].

Em contrapartida aos wigglers, como a radiação produzida pelos onduladores é quase mono-
cromática, o que a maioria dos experimentos necessita, é possı́vel aproveitar praticamente toda a luz
produzida pelo dispositivo [1]. Além disso, através de configurações das fileiras (cassetes) de blo-
cos magnéticos, a combinação de campo na vertical e horizontal leva a geração de radiação com
polarização e energia controláveis [6]. Por tais razões, onduladores tornaram-se o dispositivo de
inserção de maior interesse nos sı́ncrotrons modernos.

4.1 Cinemática em um ondulador

Em um ondulador [10], um campo B⃗ = (Bx, By, Bz) exerce uma força magnética, segundo ex-
pressão da força de Lorentz, γmd2r⃗

dt2
= F⃗ = qv⃗ × B⃗. Com isso, encontramos a trajetória do elétron.

d2r⃗

dt2
= − e

γm

(
dz

dt

(
dy

dz
Bz −By

)
,
dz

dt

(
Bx −

dx

dz
Bz

)
, ẋBy − ẏBx

)
O ondulador tem efeito de alterar ligeiramente o movimento na transversal, em x e y, já na longi-

tudinal, a velocidade dz
dt

continua ultrarrelativı́stica. Nesse sentido, nota-se que os desvios angulares
em relação à longitudinal, dx

dz
e dy

dz
, são pequenos e, em primeira aproximação, podem ser desprezados.

Com isso, as equações no plano transversal são:

d2

dt2
(x, y) = − e

γm

dz

dt
(−By, Bx)
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(
dx

dt
,
dy

dt

)
=

e

γm

∫
(By,−Bx) dz (11) (x, y) =

e

γm

∫ ∫
(By,−Bx)dzdt (12)

Vamos considerar um campo apenas na vertical, B⃗ = −B0 sin
(

2πz
λu

)
ŷ, para um modelo de ondu-

lador, logo o elétron apenas será defletido na horizontal.

dx

dt
=

e

γm

∫
−B0 sin

(
2πz

λu

)
dz ⇒ dx

dt
=

eB0λu

2πmγ
cos

(
2πz

λu

)
O parâmetro de velocidade βx = 1

c
dx
dt

do elétron na direção horizontal é calculado e da sua ex-
pressão, reunindo as constantes relativas apenas ao dispositivo, define-se K, o parâmetro de deflexão.

βx =
eB0λu

2πmcγ
cos

(
2πz

λu

)
=

K

γ
cos

(
2πz

λu

)
(13) K =

eB0λu

2πmc
(14)

Como visto na Seção 3.4, a radiação sı́ncrotron é emitida localmente em um cone de abertura
tı́pica 1/γ, porém o elétron emite radiação durante todo o seu movimento oscilatório e, no total, a cada
perı́odo, a radiação é espalhada em um cone de abertura K/γ. Se K é próximo de 1, o que caracteriza
um ondulador, o maior desvio angular do elétron é cerca de 1/γ, segundo a expressão acima, então a
radiação emitida durante todo o seu movimento em tal DI permanece aproximadamente dentro desse
cone, o que permite um efeito de interferência significativo [6]. A força magnética não realiza trabalho
sobre uma partı́cula livre, por isso o elétron é defletido, porém o módulo da sua velocidade não se
altera. Com isso, pode-se afirmar:

β2
z + β2

x = β2 = const ⇒ βz =

√
β2 − K2

γ2
cos2

(
2πz

λu

)
Para velocidades ultrarrelativı́sticas, como nos sı́ncrotrons, γ ≫ 1, assim, pode-se aproximar:

βz ≈ β

(
1− K2

2β2γ2
cos2

(
2πz

λu

))
= β

(
1− K2

4β2γ2
− K2

4β2γ2
cos

(
4πz

λu

))
É útil considerarmos o valor médio quadrático de βzc ao longo de um perı́odo magnético do

ondulador. A média do cosseno em um perı́odo é nula e aproximando 1/β para 1, obtém-se:

β = ⟨βz⟩ = β

(
1− K2

4γ2

)
(15) βz = β − K2

4γ2
cos

(
4πz

λu

)
(16)

A velocidade média em z é βc, logo uma primeira aproximação de z(t′) é z(t′) = βct′. Define-se
a frequência ω0 referente ao perı́odo magnético:

ω0 = 2π
βc

λu

Com isso, podemos integrar as velocidades e encontrar:

x(t′) =
K

γ

c

ω0

sin (ω0t
′) ; z(t′) = βct′ − K2

4γ2

c

2ω0

sin (2ω0t
′)
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Na maioria dos casos, o movimento da partı́cula é bem pequeno. Considerando uma faixa de
valores tı́picos do parâmetro de deflexão, K = 0.5− 3, perı́odo λu = 50 mm e energia E = 3 GeV, o
ângulo de deflexão máximo na horizontal é 0,0833-0.50 mrad e a respectiva amplitude de oscilação é
0,66-4,00 µm. Em z, a oscilação em torno da média é ainda menor, com amplitude de 0,07-2,50 Å.

4.2 Interferência

Enquanto os elétrons oscilam dentro do ondulador, a aceleração máxima acontece nos extremos de
sua trajetória e, como deduzido na seção 3.4, maior aceleração significa maior intensidade de radiação.
Por isso, é comum considerarmos que as emissões acontecem só nesses pontos para o cálculo dos
harmônicos [9], radiação que resulta de interferência construtiva.

Figura 4 – Interferência entre dois raios luminosos emitidos em máximos consecutivos da trajetória
do elétron no ondulador.
Fonte: Elaborada pelo autor.

A emissão em A e A′, Figura 4, não acontece ao mesmo tempo, então não podemos afirmar que a
diferença de caminho óptico é simplesmente AB = λu cos θ. Consideremos que a luz é emitida em A

no instante tA = 0, assim, tB = λu cos θ/c e tA′ = λu

βc
. A diferença de tempo entre as frentes de onda

emitidas nesses polos consecutivos é ∆t = tA′ − tB, logo:

∆t =
λu

βc
− λu cos θ

c
=

λu

βc
(1− β cos θ)

A diferença de fase de um perı́odo a outro é ω∆t e deve ser um múltiplo de 2π para a interferência
construtiva acontecer, então 2πn = ωn∆t, logo:

1− β cos θ = n
ω0

ωn

=
ω0

ω1

(17)

A equação em termos de comprimento de onda se torna λn = λu

n

(
1
β
− cos θ

)
. Aplicando (15) e

usando β =
√
1− 1/γ2 e cos θ ≈ 1− θ2/2, encontra-se:

λn =
λu

2nγ2

(
1 +K2/2 + γ2θ2

)
(18)
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Segundo equação acima, a chamada Equação do Ondulador, quanto menor o perı́odo magnético
λu e maior a energia do feixe, e consequentemente o γ, menor serão os λn, ou seja, os comprimentos
de onda emitidos. Um ondulador tı́pico, com perı́odo de algumas dezenas de milı́metros, produz
radiação de alguns nanômetros, já que γ é da ordem de alguns milhares [6].

Vemos que os harmônicos também dependem do parâmetro K, logo da amplitude de campo
magnético do dispositivo, Equação (14). Assim, curiosamente, um menor campo produz uma radiação
de maior energia, o contrário de um dipolo, onde é necessário um campo maior para produzir λ me-
nor [6]. Normalmente, os onduladores contêm mecanismo que permite variar a intensidade do seu
campo, assim pode-se variar K e consequentemente os comprimentos de onda da luz produzida.

Os comprimentos de onda variam com o ângulo θ de observação, por isso a abertura das linha de
luz é crucial para escolher as caracterı́sticas adequadas da radiação. Em θ = 0, isto é, sobre o eixo do
ondulador, obtém-se os menores λ, logo as maiores energias emitidas pelo ondulador se concentram
em torno da direção longitudinal.

4.3 Espectro

Com a trajetória já parametrizada, podemos inseri-la no cálculo da distribuição espectral angular
de energia, Equação (7). Tomando-se n̂ uma direção tal que θ ≪ 1 na qual a radiação é observada e
r(t′) = (x(t′), 0, z(t′)) a posição da partı́cula, calcula-se a fase ω(t′ − n̂ · r⃗/c):

ω(t′ − n̂ · r⃗/c) = ω

ω1

ω0t
′ − uω sin (ω0t

′) + vω sin (2ω0t
′) (19)

Na expressão, define-se as constantes u = K
γω0

θ cosϕ e v = K2

8γ2ω0
. Para o produto vetorial duplo

na integral, n̂× (n̂× β⃗), considerando K ≪ γ e θ ≪ 1 pode-se desprezar termos de segunda ordem,
ou seja, termos com (K/γ)2, θ2 ou θ(K/γ). Assim:

n̂× (n̂× β⃗) = (n̂ · β⃗)n̂− β⃗ = (θ cosϕ− βx, θ sinϕ, 0)

A integral a ser resolvida está definida para todo o tempo de movimento do elétron, isto é, t′

de −∞ a +∞, todavia a partı́cula passa um tempo finito no ondulador. Consideremos então que a
contagem de tempo se inicia na metade do primeiro perı́odo magnético, logo t′ ∈

[
− π

ω0
, −π+2πN)

ω0

]
.

Seja I a integral em (7), para todo o tempo no ondulador, e Ik para cada perı́odo, assim:

I =

∫ +∞

−∞
=

∫ (−1/2+N) 2π
ω0

− 1
2

π
ω0

=
N−1∑
k=0

∫ (1/2+k) 2π
ω0

(−1/2+k) 2π
ω0

=
N−1∑
k=0

Ik ⇒ I =
N−1∑
k=0

Ik

Fazemos uma mudança de variável e passamos do tempo contado desde o inı́cio do ondulador
para o tempo contado apenas em cada perı́odo, ou seja, de t′ para t′ − k 2π

ω0
, assim:

Ik =

∫ π
ω0

− π
ω0

n̂× (n̂× β⃗(t′ − 2kπ/ω0))e
iω(t′−2kπ/ω0−n̂·r⃗(t′−2kπ/ω0)/c)dt′
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O movimento do elétron é periódico, logo sua velocidade também é periódica, por isso β⃗(t′ −
2kπ/ω0) = β⃗(t′). Por outro lado, a posição longitudinal é sempre crescente, então a fase se torna
crescente também com o tempo. Substituindo t′ − 2kπ/ω0 na coordenada z, chegamos em:

z(t′ − 2kπ/ω0) = z(t′)− kλu = z(t′)− 2kπβc/ω0

Reunindo os termos adicionais devido ao avanço de fase separadamente, a integral se torna:

Ik = I0e
−ikδ ; δ = ω

2π

ω0

(1− β cos θ)

Segundo Equação (17), 1 − β cos θ = ω0/ω1, logo δ = 2π ω
ω1

. Com isso, o módulo quadrado da
integral ao longo de todo o ondulador é:

|I|2 = |I0|2
∣∣∣∣∣
N−1∑
k=0

e−ikδ

∣∣∣∣∣
2

= |I0|2
sin2 (Nδ/2)

sin2 (δ/2)
= |I0|2

sin2 (Nπω/ω1)

sin2 (πω/ω1)
= N2|I0|2 · L(Nω/ω1)

Normalizando pelo número total de perı́odos N , definimos a função de grade, L(Nω/ω1), por
analogia com o padrão de interferência por grades de difração. Nos gráficos de L abaixo percebe-
se que quanto mais perı́odos, mais estreitos serão as linhas do espectro do ondulador em torno dos
harmônicos, assim como observa-se nos padrões de radiação por grades de difração.

(a) (b)

Figura 5 – Linhas de interferência. (a) Ângulo fixo: sobre eixo do ondulador. (b) Frequência fixa:
harmônico 1 sobre eixo.
Fonte: Elaborada pelo autor.

Os máximos de sin2 (Nα)

N2 sin2 (α)
acontecem quando αk = kπ e os mı́nimos adjacentes quando N(α± −

kπ) = ±π. O perfil dos picos é aproximadamente triangular, logo podemos estimar a sua largura a
meia altura (FWHM) como a metade da base do triângulo, ou seja, ∆αk = α+−α−

2
= π/N . No caso

do ondulador, α = πω/ω1, sendo ω1 = ω1(θ), como aponta a Equação (17), logo ∆(ω/ω1) = 1/N .
Tomando-se um ângulo fixo e frequências em torno de um harmônico k, Figura 5a, a largura

de frequências é ∆ωk = ω1/N , ou seja, o espectro emitido observado em certa direção fixa possui
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harmônicos de mesma largura ω1/N . Em termos da frequência ωk observada:

∆ωk =
kω1

kN
⇒ ∆ωk

ωk

=
1

kN

Para uma determinada frequência, Figura 5b, observa-se também interferência construtiva a dife-
rentes ângulos constituindo espectro formado por linhas. Em cada ângulo dos máximos de emissão
tem-se uma largura ∆(kω1(0)/ω1(θ)) = 1/N ⇒ ∆(θ2) = 1+K2/2

γ2kN
, portanto:

∆θ ≃ 1

γ

√
1 +K2/2

kN

A abertura angular do cone em que a radiação se espalha é da ordem de (γ
√
N)−1, ou seja, menor

do que a emissão local de radiação sı́ncrotron, Equação (10), e diminui com o número de perı́odos.
Separando o fator de interferência N2L(Nω/ω1) do restante da expressão do espectro, nota-se

que todo o perfil de intensidade de radiação é determinado por apenas um perı́odo de movimento, que
é calculado na integral I0. A dependência temporal na exponencial dessa integral pode ser reescrita
em termos de funções de Bessel de ı́ndices inteiros j, segundo a expansão de Jacobi-Anger:

eia sin (ωt) =
∞∑

j=−∞

Jj(a)e
ijωt

Aplicando essa expansão na fase (19), obtém-se:

eiω(t
′−n̂·r⃗/c) =

∑
n,m

Jn(vω)Jm(uω)e
iRωω0t′ ; Rω = ω/ω1 −m+ 2n

Assim, pode-se resolver a integral I0 de exponenciais com e sem cosseno e expressar os resultados
em termos da função sincx = sinx/x. Por fim, obtemos:

d2I

dωdΩ
=

e2ω2N2

16πϵ0cγ2ω2
0

∣∣∣∣∣∑
n,m

Jn(vω)Jm(uω)
[
2γθ(cosϕx̂+ sinϕŷ) sinc (πRω)+

− x̂K[sinc (π(Rω + 1)) + sinc (π(Rω − 1))]
]∣∣∣∣∣

2

L

(
Nω

ω1

) (20)

Como mostrado na Equação (6), a expressão dentro do módulo quadrado é relacionada ao campo
elétrico da radiação, por isso, podemos analisar a polarização da radiação emitida apenas analisando
as componentes x̂ e ŷ dentro do módulo. Como não há diferença de fase entre essas componentes, a
radiação é linearmente polarizada. Além disso, sobre o eixo, quando θ = 0, a polarização é comple-
tamente horizontal, só resta a componente x̂ na expressão.

Ainda sobre o eixo do ondulador, o parâmetro u é nulo, já que θ = 0, então temos Jm(0). Nesse
caso, as funções de Bessel são não nulas apenas quando m = 0, com J0(0) = 1, logo:

d2I

dωdΩ

∣∣∣∣
θ=0

=
e2ω2N2K2

16πϵ0cγ2ω2
0

∣∣∣∣∣x̂
∞∑

n=−∞

Jn(vω)
[
sinc (π(Rω + 1)) + sinc (π(Rω − 1))

]∣∣∣∣∣
2

L

(
Nω

ω1

)
(21)
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Quando observa-se um harmônico k, os sinc são não nulos apenas quando Rω ± 1 = 0, logo
quando as funções de Bessel têm os ı́ndices n = −(k ± 1)/2. Além disso, L(Nk) = 1, então:

d2I(ωk)

dωdΩ

∣∣∣∣
θ=0

=
e2ω2N2γ2

16πϵ0cω2
0

K2
∣∣J(k+1)/2(vωk)− J(k−1)/2(vωk)

∣∣2
Se k é par, então o ı́ndice −(k ± 1)/2 não é inteiro e não existirá um n pelo qual as funções

de Bessel passaram para Jn(vω) sinc (π(Rω ± 1) ser não nulo. Por essa razão, sobre o eixo, não há
radiação referente a harmônicos pares, só aos ı́mpares.

A expressão nos fornece a energia irradiada pela passagem de um elétron através do ondulador. É
mais comum expressar essa medida em termos do fluxo de fótons emitidos por um feixe de elétrons,
então, para isso, calculamos a potência como P = I(ω) · Ib/e, sendo Ib a corrente elétrica do feixe
(carga por tempo de volta no acelerador), e, com isso, o número de fótons de certo harmônico por
segundo, ṅ = P/(ℏω). Por fim, temos o fluxo de fótons ṅ por unidade de ângulo sólido dΩ e por
unidade de largura de banda relativa dω/ω, mais referida como densidade espectral angular de fluxo
[6], cuja unidade é fótons/s/mrad2/0,1%bandwidth = 10−9fótons/s/rad2/bandwidth. A Figura 6 exibe
o espectro (21), calculado segundo Equação (22), com a corrente de operação do Sirius - CNPEM.

d2ṅ

dΩdω/ω
=

ℏω
ℏ

d2ṅ

dΩdω
=

1

ℏ
d2P

dΩdω
=

1

ℏ
Ib
e

d2I(ω)

dΩdω
(22)

Figura 6 – Densidade espectral angular de fluxo de fótons para os parâmetros especificados.
Fonte: Elaborada pelo autor.
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5 Onduladores na Prática

A realização teórica de onduladores data de 1947, por V. L. Gintzburg [11]. Posteriormente, em
1951, Motz e colaboradores analisam as propriedades teóricas da radiação de onduladores [12] e
em 1953 constroem o primeiro exemplar [13]. Em 1981, Halbach [14] utiliza a ideia de vetores
magnetização cuja rotação evolui linearmente em uma direção, tal como na Figura 7a, para produção
de campo de multipolo e de onduladores. Nesse mesmo artigo, ele apresenta o arranjo de 4 blocos por
perı́odo, Figura 7b, configuração usada até hoje, pois é um bom compromisso entre fácil manufatura
e campo aproximadamente senoidal.

(a)
(b)

Figura 7 – Vetores magnetização rotacionando ao longo do comprimento do objeto. (a) Caso ideal.
(b) Arranjo de Halbach para onduladores.
Fonte: Elaborada pelo autor.

Há diferentes modelos de onduladores quanto ao formato e distribuição dos cassetes de blocos,
cada um com o propósito de melhorar alguma caracterı́stica da radiação. O tipo mais comum é o
planar, composto por dois cassetes de blocos tipicamente retangulares, um superior e outro inferior.

É de muito interesse a capacidade de controlar os parâmetros da radiação que os onduladores
produzem. Para isso, adiciona-se ao dispositivo suportes mecânicos para movimentação dos seus
cassetes, o que altera o campo e, consequentemente, a radiação produzida. O ondulador do tipo APU
(Adjustable Phase Undulator) [15] permite o deslocamento na longitudinal de um dos cassetes, o
que resulta em diminuição da amplitude do campo e controle do parâmetro de deflexão K. É de
muita utilidade também a manipulação da polarização da radiação, assim surgem os onduladores com
blocos produzindo campo na direção horizontal e vertical através da adição de mais fileiras nas regiões
superiores e inferiores, como nos chamados APPLE (Advanced Planar Polarizer Light Emitter) [16].

5.1 Análises de campo de onduladores reais

Um ondulador deve satisfazer dois requisitos principais de operação: as posições e direções de
movimento finais dos elétrons não devem variar em relação às da entrada e a interferência construtiva
deve ser máxima de perı́odo a perı́odo para garantir a máxima intensidade de radiação. Essas duas
caracterı́sticas são expressas pelas integrais de campo e o erro de fase [6], análises descritas a seguir.
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Como apresentado nas Equações (11) e (12), a posição e velocidade do elétron são relacionadas
diretamente às integrais do campo magnético. Utilizando dz

dt
≈ c, podemos expressar a segunda inte-

gral de (12) como função de z e expressar o ângulo da direção de movimento a partir das velocidades,
x′ = 1

c
dx
dt

e y′ = 1
c
dy
dt

, com isso as posições e direções finais são:

(x′, y′) =
e

γmc

∫ +∞

−∞
(By,−Bx)dz ; (x, y) =

e

γmc

∫ +∞

−∞

∫ +∞

−∞
(By,−Bx)dz

′dz

Figura 8 – Inclinação da direção de movimento do elétron. Fonte: Elaborada pelo autor.

Portanto, idealmente, ambas as integrais devem ser nulas para não haver um desvio do feixe de
elétrons na saı́da do DI. Na prática, como observado no CNPEM, é possı́vel alcançar integrais da
ordem de 25 Gcm para primeira integral e 10 k Gcm2 para a segunda. Para elétrons a 3 GeV, isso
equivale a cerca de 2, 5 µrad ou 0, 5′′ de ângulo e 10 µm em deslocamento, respectivamente.

Além disso, erros de magnetização dos blocos e de construção mecânica resultam em perfis
de campo imperfeitos, o que se reflete em uma diminuição da emissão de radiação. A medida da
correlação entre erros de campo e intensidade de radiação é dada pelo erro de fase. Mostra-se que a
intensidade cai exponencialmente com o número do harmônico k e o valor RMS σϕ desse erro, com
I ∝ e−k2σ2

ϕ [17]. Por essa razão busca-se anular o erro de fase para obter a máxima emissão.
A fase da radiação de um ondulador pode ser pensada como o atraso da frente de onda emitida pelo

elétron em relação a sua posição longitudinal, isto é, a fase associada a um comprimento ∆L = ct−z,
ϕ = 2π

λ
∆L, o que pode ser mostrado analiticamente da Equação (8). Considerando s o comprimento

da trajetória desenvolvida pela partı́cula, então βct = s. Por fim, a fase para cada posição z é:

ϕ(z) =
2π

λ

(
s(z)

β
− z

)
(23)

No caso ideal, a partı́cula percorre o mesmo comprimento de um perı́odo magnético a outro,
∆s = const, logo a fase ϕ0 é linear nos polos j de campo. Dessa maneira, o erro de fase δϕ é
estabelecido como o desvio em relação a um comportamento linear nos polos, ou seja, δϕj = ϕj−ϕ0

j .
Define-se então σϕ = ⟨δϕj⟩RMS , cujo valor tı́pico almejado é de cerca de 5◦, o que corresponde a
uma diminuição de 7% na intensidade do terceiro harmônico, por exemplo.

Após o ondulador ser construı́do, haverá imperfeições no seu campo magnético, sejam por erros
mecânicos de fixação e montagem dos blocos e cassetes ou magnéticos, da magnetização medida e a
real dos blocos. Por isso, faz-se necessário uma série de etapas de medição e ajustes para otimização
da qualidade do dispositivo através de métodos baseados nos parâmetros apresentados.
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5.2 Onduladores CNPEM - Sirius

A fonte de luz sı́ncrotron Sirius inclui diversos onduladores ao longo do seu anel de arma-
zenamento. Eles devem ser construı́dos especialmente para atender as necessidades de energia e
polarização das linhas de luz. O projeto magnético de um ondulador exige diversas simulações mag-
netostáticas e ajustes práticos de campo que serão brevemente apresentadas a seguir.

Para simulação, além de outros softwares, é utilizado o Radia [18], um pacote de métodos numé-
ricos para cálculos magnetostáticos otimizado para onduladores e wigglers e amplamente aplicado no
desenvolvimento de DIs pelo mundo. Com esse pacote é possı́vel construir o conjunto de blocos do
ondulador dadas suas dimensões, posições e vetores magnetização iniciais.

A partir disso, cada objeto é subdividido em volumes menores, nos quais magnetização M⃗ uni-
forme é assumida, então a magnetização resultante da interação entre blocos é encontrada por itera-
ções a partir do seu campo. No espaço em torno dos objetos ∇⃗ × H⃗ = 0⃗ logo H⃗ = −∇⃗Φm, sendo
Φm o potencial magnético escalar [2].

Φm(x⃗) = − 1

4π

∫
V

∇⃗ · M⃗(r⃗′)

R
dτ ′ +

1

4π

∮
S

n̂′ · M⃗(r⃗′)

R
da′

Para cada subdivisão, ∇⃗ · M⃗ = 0, assim, o campo magnético de cada uma é calculado pelo pacote
segundo expressão abaixo e, por superposição, o campo do conjunto é determinado.

H⃗ = − 1

4π

∮
S

R⃗(n̂′ · M⃗)

R3
da′ (24)

Um exemplo é o PAPU50 (Prototype Adjustable Phase Undulator; perı́odo 50 mm), um ondulador
planar do tipo APU, concluı́do no ano de 2023 no CNPEM. Ele está em uso na linha de luz SAPU-
CAIA (Scattering APparatUs for Complex Applications and In-situ Assays), do Sirius, dedicada à
caracterização estrutural de materiais nano e microestruturados aplicando a técnica de Espalhamento
de Raios X a Baixos Ângulos (SAXS) [8].

(a) (b)

Figura 9 – PAPU50. (a) Modelo computacional Radia. (b) Resultados calculados do modelo.
Fonte: Elaborada pelo autor.
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Com o modelo do PAPU50, Figura 9a, calculou-se seu campo magnético pelo Radia e pôde-se
encontrar a respectiva trajetória de um elétron segundo suas equações de movimento por meio do
método de Runge-Kutta de ordem 4, além de calcular o erro de fase (23) nos polos (máximos e
mı́nimos), como apresentado na Figura 9b.

(a) (b)

Figura 10 – PAPU50 montado. (a) Medição de campo por sensor Hall. (b) Análises finais, após ajustes.
Fonte: (a) Foto adaptada de Reinaldo Bası́lio. (b) Elaborada pelo autor.

A Figura 10a exibe o PAPU50 em medição no qual é identificar o sensor Hall, os cassetes superior
e inferior e os blocos em arranjo de Halbach. Já na Figura 10b tem-se o campo medido sobre eixo, os
resultados de trajetória com desvios e o respectivo erro de fase. Com isso, exemplificamos as análises
descritas anteriormente, importantes para os ajustes práticos.
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6 Conclusão

Neste trabalho, apresentou-se uma descrição geral de radiação, seus fundamentos eletromagné-
ticos, definição e as diferentes maneiras de caracterizá-la através de suas distribuições angulares de
energia e por frequência emitida, seu espectro. Essa foi a base para a posterior discussão de radiação
sı́ncrotron emitida por elétrons em regime ultrarrelativı́stico, β ≈ 1, e de onduladores, dispositivo que
a produz, objetivo desse estudo.

Discutiu-se a produção de radiação por um ondulador do tipo planar APU, com campo magnético
apenas em uma direção, considerada vertical. Mostrou-se que um dispositivo de perı́odo magnético
de alguns milı́metros produz radiação de comprimentos de onda da ordem de nanômetros. Além
disso, devido a interferência de perı́odo a perı́odo, o espectro constitui-se de harmônicos de grande
intensidade. Também, a radiação é linearmente polarizada e, sobre a direção do eixo do dispositivo, é
completamente polarizada na direção horizontal.

Por fim, comentou-se os aspectos práticos de construção de onduladores em geral. A teoria apre-
sentada e referenciada proporcionou a definição da qualidade de onduladores reais por meio das
análises de suas integrais de campo, o que os caracteriza como um dispositivo de inserção, isto é,
não proverem desvios totais acentuados do movimento inicial dos elétrons, e do seu erro de fase,
medida da interferência construtiva da radiação. Ainda, pôde-se ilustrar um exemplo prático com o
PAPU50, mostrando resultados a partir de dados simulados e medidos do dispositivo real.
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